Marina: A Processor

Todd Charlton, Branden Ghena, Austin Maliszewski, Ben Mason, Paul Murley

December 11, 2013

Introduction

The performance of any microprocessor system
pipeline depends on its ability to remain as close
to fully utilized as possible. However, many opera-
tions that microprocessors perform have variable and
unpredictable execution times, preventing fixed-stage
pipelined systems from performing well.

In this paper, we present our upgrades to the
VeriSimple Alpha, an implementation of a subset of
the Alpha ISA written in synthesizable Verilog. Our
upgrades include adding out-of-order execution ca-
pacity, simultaneous multithreading (SMT), and two-
way superscalar execution, all of which are intended
to let the processor do more at once and to minimize
the time spent sitting idle.

1 System Design

We present Marina, a two-way superscalar simultane-
ous multithreading out-of-order microprocessor, writ-
ten in synthesizable SystemVerilog. Marinaconsists
of 20 discrete submodules and a top-level module that
connects them together. In this section, we provide
an overview of these modules.

Our processor provides a full implementation of the
EECS 470 Alpha ISA subset, as required for this
class. Additionally, it provides an implementation
of several new instructions, to be detailed later.

1.1 Processor Stages

Our processor has a pipeline that somewhat resem-
bles the standard RISC machine, however, instruc-
tions do not need to flow through all parts of the
pipeline in order. Each stage is implemented by one
or more System Verilog modules, and ends in flip-
flop registers internal to the module implementing
the stage. This allows us to have significantly sim-
pler top-level logic.

1.1.1 Fetch Stage

Marina’s fetch stage queries the branch predictor,
branch target buffer, and instruction cache to select
up to two instructions to send to the decode stage

for decoding and register renaming. The fetch stage
prefers to send one instruction from each thread if
two threads are running and the current instruction
from each thread is available in the instruction cache.
If instructions are only available from one thread, the
fetch stage will send both the current instruction and
the next instruction in that thread, if available. This
allows us to sustain superscalar execution abilities in
single-threaded mode.

The fetch stage also checks the reservation stations
and the reorder buffer to ensure that there will be
adequate space for new instructions. This is done so
as to make fetch the only source of pipeline stalling,
at the cost of not being able to always dispatch in-
structions when the RS or ROB are almost full. We
decided to accept this slight performance hit so as to
greatly simplify the logic of stalling, which was sig-
nificantly complicated by having multiple threads.

1.1.2 Decode Stage

Marina’s decode stage decodes two instructions in
parallel, and completes register renaming for the ap-
propriate thread. If the registers are currently avail-
able in the physical register file, their values will be
read out then. The decode stage writes the decoded
values into pipeline registers for dispatch into the
reservation stations and entry into the reorder buffer
(ROB) in the next cycle.

1.1.3 Dispatch Stage

On the cycle after decode, instructions are dispatched
into the reservation stations and are given an entry
in the reorder buffer. Again, we are capable of dis-
patching two instructions simultaneously, regardless
of thread. The dispatch stage also checks the com-
mon data bus (CDB) to see if any of the dispatching
instruction’s operands have been made available. In
fact, Marina gets its name from this process.

1.1.4 TIssue and Execution Stage

Marina has a combined issue and execution stage.
Instructions that have acquired values for their
operands are issued to execution units, which can
then finish and commit back their values in the same

cycle. This is useful, since most of our execution units
can finish in one cycle. However, multiplication is a
multi-cycle operation and does not reap benefits here.

When functional units complete, they request per-
mission to write to the CDB. The CDB arbitrator
manages the CDB and stalls functional units as ap-
propriate. The arbitration process gives priority to
the commit unit (which returns the values from mem-
ory operations and described in more detail below),
then to the multipliers, then to the address genera-
tion units, then to the arithmetic units.

1.1.5 Commit Stage

The commit stage takes instructions from the ROB
and retires them. It is capable of retiring two in-
structions simultaneously, and prefers one from each
thread, but is also capable of retiring two instruc-
tions from a single thread. During the commit stage,
branch prediction correctness is reported back to the
branch predictors (described below) and branch mis-
prediction squashes are triggered throughout the sys-
tem (when necessary).

The commit stage also handles processing for sev-
eral instructions and interacts with both the data
cache and the CDB. We decided early on that com-
mit would be the only module to interact with the
data memory. This decision was made because we
recognized that we only had a limited amount of com-
plexity to spend and we would be spending plenty on
superscalar execution and SMT. We decided to make
as many other simplifying choices as possible.

As we mentioned previously, one of these choices
was to handle memory interactions once they have
reached the head of the ROB. The data is sent to the
data cache and that slot of the commit stage will wait
until it has been serviced. Since we are not allowed to
retire instructions out of order, while servicing a load
or store no other instruction may be retired from the
same thread. Results for a load are written back on
the CDB, for which commit has the highest priority.

Finally, the commit stage also handles irregular in-
structions that could not be handled elsewhere in the
system. This includes: fork, cpuid, 1dq_1, stq.c,
halt, and illegal instructions. Illegal instructions
retiring in the commit stage cause system failure.
The implementation of fork, cpuid, 1dq.l, and stq_c
are described below in section [[4.1]

1.2 Advanced Caches

Our processor uses two caches: an instruction cache
and a data cache. FEach consists of 32 64-bit lines
and each is four way set associative. Both caches

are non blocking, meaning that memory requests can
be processed in parallel. We implement this in the
following way. When we send a request to memory
for data, we add the address to a buffer that maps
memory tags to addresses. We use this to determine
whether or not a given request needs to be sent off
to memory. We also use this so that we can send
loads off to memory and, assuming we get the right
acknowledgment from memory, we can in many ways
forget about them.

The instruction cache is quad ported, meaning that
the core can read four instructions from it at a time.
In general, this is to allow the fetch stage to read the
current and next instructions from each thread. The
instruction cache uses a pseudo-LRU eviction policy.
Each set maintains and updates an eviction tree that
points to the next line to evict in that set. Since
the only time we are writing to the instruction cache
is when data comes back from memory, and only one
line can come back from memory at a time, we do not
have to worry about evicting more than one cache line
per cycle.

The data cache is only dual ported but offers many
of the same capabilities of the instruction cache. It
is non-blocking as well. Stores are fired off to mem-
ory and then forgotten. Load information is stored
in a buffer to allow parallel load processing and to
ensure the correct data makes its way to the correct
requester. One major difference between the instruc-
tion cache and the data cache is that the data cache
uses a pseudo random eviction policy within sets by
use of counters. This is because the data cache may
have up to three lines evicted in the same cycle. If
a load comes back from memory and we get stores
on each of the two lines from the core, we must in
some cases evict three things, in rare cases all from
the same set. Maintaining pseudo LRU trees to ac-
count for this possibility would create a huge amount
of overhead, so we opted for pseudo random eviction.

1.3 Branch Prediction

The branch predictor used in our system was a local
history predictor with a two-bit history and a stan-
dard two-bit saturating counter as the predictor. The
branch history table is accessed by the lower five bits
of the PC (after word access bits are removed). It
stores the most recent two cycles of history for the
associated branch or jump instruction. This history
data is used to access the second-level prediction ta-
ble, consisting of mappings from history to a two-bit
predictor. These choices were determined through
testing as shown in section [3]

In order to support a prediction of Taken, a Branch
Target Buffer was also created. It stores the target
address for branches and jumps as determined by the
commit stage. It is a fully-associative structure with
a random eviction policy. Each entry is tagged with
the instruction’s PC, allowing us to ensure that it
will never alias with a non-branch instruction except
in the case of self-modifying code. The BTB is 32
entries in size, allowing it to comfortably hold branch
target data without evictions on most test programs.

1.4 Simultaneous Multithreading

As mentioned before, processors achieve their best
performance when they are being completely utilized.
However, because of the variable latency of some in-
structions, particularly the retrieval of a word of data
from memory, in an in order machine, the processor is
forced to insert many cycles of no-operation instruc-
tions, while waiting on the memory system. Out-of-
order techniques help solve this problem because they
allow the processor to replace those no-operation in-
structions with instructions that do useful work, that
come later in program order, but are not dependent
on the load causing the backup.

Out-of-order execution alone provides a significant
advantage over in-order execution, however, when
combined with simultaneous multithreading, the ad-
vantage is greater still, because the processor can now
consider a second program when looking for ready in-
structions. This means there will be a much greater
number of ready instructions because it is impossi-
ble for these programs to have register level data
dependencies on each other. This section describes
the modifications we’ve made to the standard out-of-
order machine to support SMT.

1.4.1 New Instructions

In addition to the instructions defined by the EECS
470 teaching staff, we also implemented additional in-
structions to support our simultaneous multithread-
ing features. These additional instructions are a load-
lock instruction, a store-conditional instruction, and
two call_pal support instructions (fork and cpuid).

Load-lock & Store Conditional: These two in-
structions serve a very important purpose in a multi-
processor or SMT environment, because they provide
a framework for data synchronization. When data is
loaded into a register with a load-lock instruction,
the processor listens for writes to that same memory
location from all threads, and causes a later store-
conditional to fail if any thread completed a write
in between the load-locking and store-conditional.

This allows the processor to guarantee atomicity of
the load-update-store procedure, a critical feature for
writing an operating system or multithreaded pro-
grams.

These instructions primarily operate in the commit
stage of our processor. Our commit module handles
all of the interactions with data memory, so it seemed
to be a logical choice for the hardware associated with
these instructions. They flow through the rest of our
out-of-order pipeline the same way regular load and
store instructions do, but go through commit com-
pletely differently.

The Alpha architectural specification has clearly de-
fined these instructions, so there was not much room
for creative design choices. We implement the spec-
ification completely. As required, when a 1dq-1
(load lock) instruction completes, our core sets the
lock_flag register for the requesting thread, and
stores the requested memory address in the corre-
sponding lock_address register. Like normal ldq
instructions, it also returns the data from memory
into the physical register that was associated with
the architected register of the instruction at dispatch
time.

Then, when a stq_c (store conditional) instruction is
executed, the lock_address register for the request-
ing thread is checked for a match. If the addresses
match, the lock flag itself is checked. If the lock
flag is set, the store is allowed to commit. If the
lock_flag is not set, or if the lock_address does
not match the target address of the store, the store
is not allowed allowed to commit. The lock_flag
is returned to the physical register that was asso-
ciated with the architected register of the instruc-
tion at dispatch time. This allows the programmer
to determine if the 1dq-1/stq-c pair was successful.
Also, the lock_flag for the thread is cleared. The
lock_flag for the other thread is also cleared if the
lock_address is the same as the target address of
this instruction.

Finally, another component was added to the han-
dling of regular stq (store quadword) instructions.
When a store instruction is committing to memory,
it checks the lock_address register for both threads.
If there is a match, the corresponding lock_flag is
cleared.

Together, this allows the processor to guarantee
atomicity of the load-update-store procedure, a criti-
cal feature for writing an operating system or multi-
threaded programs.

/* FORK and save result in r30 */
call_pal (0x100 + 30)

/* Get CPUID and save it in r29 */
call_pal (0x200 + 29)

/* Go to thread b if it started */
bne $r29, thread_b_label

/* Go to logic if fork failed */
bne $r30, failed_to_fork_label

/* Go to thread a */

br thread_a_label

Figure 1: Sample code for spawning a new thread.

call pal support instructions: The Alpha in-
struction set defines a special instruction called
Call Privileged Architecture Library or call_pal for
short. This instruction takes as its only argument,
the immediate number of the PAL entry to run. In
the original VeriSimple processor, there is only one
supported PAL entry: halt. We added two new fam-
ilies of PAL entries, fork and cpuid. We say “families”
because we slightly abuse the call_pal instruction
and the constant-folding feature of the assembler to
handle these commands. This is perhaps best shown
by an example, which we’ll present after explaining
what the instructions do.

Fork is used to spawn a new thread. In our imple-
mentation it behaves somewhat similarly to the Unix
fork() system call, in that the new thread begins ex-
ecuting at the address of the instruction immediately
after the fork instruction. Fork returns a 0, 1 or -1
to the parent thread, indicating that it was thread
0, thread 1, or that fork failed, respectively. This
allows a program to try forking, and to detect if fork-
ing failed. We also provide a cpuid instruction which
allows a programmer to query the processor to find
out the ID of the thread currently executing. This al-
lows programmers to fork, execute cpuid and branch
based on these results. Spawning a new thread looks
something like like Figure 1.

We also modified the behavior of the halt call pal
instruction to halt only the currently running
thread.

2 Tools & Testing

This section of our report serves to discuss the tools
we created to aid in testing of Marina, and to describe
our testing procedures.

2.1 Tools

In order to help facilitate our development of Marina,
we developed a number of tools to make programming

and testing easier. Some of these tools were incred-
ibly useful, and we would highly recommend some
of these techniques to other groups; others we see as
“candy” that provided no practical benefit.

2.1.1 Autogeneration of top.v

One of the tools we found the most useful in develop-
ing the project was verilog-mode for Emacs. Verilog-
mode has a number of features designed to reduce the
redundancy of verilog and to make coding easier. We
used verilog-mode’s AUTOs extensively, to complete
virtually all of our top-level module automagically.
For the most part, the AUTOs worked fantastically,
and dramatically reduced our workload while also re-
moving all concerns about top.v’s correctness.

Upon telling Emacs to update the AUTOs, verilog-
mode searches for all instances of the comment
/*AUTOINST*/ in module instantiations and automat-
ically fills out all the connections. It then searches for
the /*AUTOWIRE*/ comment and creates wires for all
of the automagically connected wire names.

Because we anticipated using verilog-mode to connect
our modules together (and because it’s good style),
we made sure to name the inputs of each module
with the same name as the output of a module. This
allowed the automagic connections to work perfectly,
with minimal effort. The only exception to this was
the wiring for our functional units. Since we wanted
to be able to manipulate the numbers and types of our
functional units by changing ‘defines, we could not
use automagic connections for them, since verilog-
mode is not SystemVerilog compatible and does not
yet understand generate commands.

We created an additional file top.v-template, which
was used to maintain a clean version of the top.v
module without any of the autogenerated content.
In this file, we created dummy instances of all of
our modules with the /*AUTOINST*/ comment and
inserted an /*AUTOWIRE*/ comment before them. We
also added the buses needed for our functional units
and instantiated them in a generate block.

We also created an Emacs-Lisp script to help com-
plete the AUTOs. The reason for this was two
fold. The auto completion in verilog-mode doesn’t
quite support SystemVerilog. Since SystemVerilog is
mostly a superset of Verilog, it mostly works, but it
didn’t work correctly with enums, so additional pro-
cessing was necessary to clean up after the AUTOs
were completed. It seemed tedious to have to do this
every time we wanted to rebuild the top-level module,
so we decided to automate it. The secondary reason
is that Austin was the only Emacs user on our team,

so we needed a way for everyone else to rebuild top.

We want to quantitatively demonstrate how amaz-
ingly helpful this was. All together, our final version
of top.v-template was only 209 lines. Our final ver-
sion of top.v, after running the AUTOs and cleanup
script, was 1032 lines. Emacs automagically wrote
823 lines of code for us; 823 lines that were guaran-
teed to be correct.

2.1.2 Testing Scripts

We quickly saw the importance of having an easy
way to verify our processor’s functionality on both the
published test cases and on our group’s test cases. We
also wanted a way to quickly identify regressions in
functionality. Therefore, we wrote bash scripts that
compile our processor, run it against all the test cases,
comparing the output with the expected output. If
the test case passes, the word PASSED is printed in
green; if the test case fails, the word FAILED is printed
in red, along with a helpful message telling us where
the test case failed, making it very obvious to see
when a change has caused a regression. Also, the
script will print WARNING in yellow, if a test case has
passed with assertion failures.

2.1.3 ncurses Visual Debugger

We saw some value in having a way to visually watch
instructions flow through the pipeline, so we decided
to extend the ncurses-based debugger that was pro-
vided with Project 3. Our debugger was capable
of showing all instructions currently in flight in the
ROBs of both threads, as well as all instructions cur-
rently waiting in the unified reservation stations. The
debugger also showed us the processor’s interactions
with the memory system, which proved very useful in
debugging the caches.

2.2 Testing Methodology

The following two sections serve to document the way
we tested individual modules and the system as a
whole.

2.2.1 Module-level testing

After meticulously writing each module for each stage
of our processor, it turns out that every module had
at least one mistake. Welcome to the world of com-
puter science. Writing flawless code is almost un-
heard of for programs longer than 50 lines. Un-
derstanding this pleasant fact helped us refine each
module. For every module that we wrote, there was
an accompanying testbench (excluding the program
counter).

The testbenches were written to emulate actual in-
puts the module would receive from other modules
when integrated into the final processor. The reason
behind writing so many testbenches was simple. If
we can guarantee that each module provides correct
output, then come time for integration, the processor
should theoretically work. Also, in unit testing if an
error occurs, it is easier to find. Since the testbench is
only written for one module and therefore the bug lies
within that module. In integration testing, if a bug
occurs, it becomes hard to track down which module
was the source of the bug.

This process proved its worth many times over. The
test benches were able to catch many subtle bugs
that we did not consider when writing the modules.
Additionally, the test benches aided down the road
when changes were made to the original modules in
an attempt to increase performance. Whenever one of
these changes was made, the module was run through
the testbench again to ensure that the fix did not
cause a correctness regression.

We think the extensive module level testing con-
tributed significantly to our relatively painless inte-
gration process. Each module was tested by a differ-
ent team member than the one who wrote it. We feel
that this strategy worked well.

2.2.2 Test programs

The next step after unit testing was integration test-
ing. This stage involved connecting all of the modules
together and running actual programs through our
processor. Initially, this process focused on correct-
ness. We used the single cycle processor to generate
the solutions we used to test against the output of
our processor.

The second part of our integration testing was to eval-
uate the processors performance on specific test cases.
The performance evaluation was two-fold. The first
attempt was to decrease the CPI. The next attempt
was to bring down the clock period. In this stage, spe-
cial testbench names were created that were designed
to test the performance of the processor on specific
scenarios. Examples of these test programs include a
program with independent instruction chains, a pro-
gram with many memory accesses in a row, and a
program with multiple conditional branch instruc-
tions. At this point, we incorporated the cache and
branch prediction percentages into our program out-
put. These reports allowed us to test different im-
plementations in the cache and predictor and watch
how they affected their own accuracy, and ultimately
CPI, on those test programs.

In addition to the supplied test programs and the
various specific testbenches written by our team, we
also created some test cases strictly for SMT. The
most basic test was to have both threads write to
the same memory 50 times, with the end goal being
the shared memory to finalize at a value of 100. The
next step was to add nop instructions to one thread
and continue to have both count to 50 again. Inter-
estingly enough, this test case exposed a last minute
bug. However, this bug was resulting from a super-
scalar register freeing issue in the RRAT. Lastly, we
wrote some test programs which are combinations of
two larger test cases like insertion and copy or inser-
tion and fib_rec. In these programs, the final contents
of memory were hard to validate, but the separate
thread’s writeback.out’s should have been their re-
spective test cases solution. These SMT programs
also showcased our processor’s ability to achieve low
CPT’s on simultaneous programs.

3 Analysis

This section serves to detail our analysis process and
to explain our choices, and what we’ve learned about
Our processor.

3.1 Branch Predictor

We used a seeded local history predictor with a two-
bit history and a two-bit predictor. In development,
we had originally created a three-bit local history pre-
dictor using the normal two-bit saturating counter
prediction scheme. In testing, we tried various other
options to determine if they had any improvement
on the prediction accuracy and thus the CPI of our
processor. In all cases, using branch prediction is a
significant on-average improvement over predict not-
taken.

Among our tested improvements to the branch pre-
dictor are a standard two-bit history predictor, a two-
bit history predictor that begins seeded with values,
and a two-bit history predictor using a different two-
bit saturating counter. The seeded branch predictor
was initialized as Strongly Taken for branches taken
within the last cycle, and Strongly Not Taken other-
wise. The state machine for the different saturating
counter used can be seen in Figure 1.

Results of the testing can be seen in Figure 3.
Testing was performed using the Copy, Fib_rec,
Insertion, Objsort, and Parsort assembly tests.
Due to the small size of the programs run on our sys-
tem, the three-bit history predictor took too long to
warm up and was ineffective. This same reason led
to the effectiveness of seeding the branch predictors.

NT

ORCTRC

T
Figure 2: Alternate FSM for a two-bit predictor.

With longer tests, the improvements from a seeded
predictor would be amortized to very small gains and
three-level history predictors would be more effective.
The attempt to utilize a different two-bit predictor
state machine was experimental, but we had hoped
it would lead to better results due to spending less
time in the inner “weak states”. In testing, however,
the different counter design proved to be ineffective.

3.2 Out-Of-Order Parameters

There are a number of fundamental parameters for
any out of order system. When optimizing our pro-
cessor, we varied a number of these parameters.

Reorder Buffer Size: The size of the reorder
buffer is essentially the maximal size of the instruc-
tion window that can be considered for out-of-order
execution. Initially, we began with a 64 entry ROB
for each thread. In our testing, we varied the size of
the ROB and measured its effect on both achievable
clock period and cycles per instruction on a subset
of the published test cases. Unfortunately, we had a
limited ability to vary these parameters, because our
implementation depended on the ROB size being a
power of two.

When we finally began working with synthesis, we re-
alized that ROB size was very highly correlated with
synthesis time, so we spent most of our time synthe-
sizing with a ROB of 16 so as to avoid having to wait
forever for synthesis.

As you can see in Figure 4, varying the size of the
ROB did not significantly, or predictably affect per-
formance. We're not entirely sure why this happened,
since we expected CPI to be improved by increasing
the ROB size, since increasing the ROB size allows
the processor to consider more instructions for spec-
ulative execution. We had a few ideas as to why the

100

& - 3
S o =}

Prediction Accuracy (%)

N
S

Not Taken Two-bit History

Two-bit History, Seeded

M copy

m fib_rec

M insertion
objsort

M parsort

Two-bit History, Better
Predictor

Three-bit History

Figure 3: Branch predictor accuracy.

improvement was so minimal. First, we believe that
we may have been somewhat limited by branch pre-
dictor accuracy, so as to never be able to take advan-
tage of the additional ROB. Second, we believe that
the increased space may have allowed more unneeded,
and later squashed, instructions to be fetched, caus-
ing unnecessary instruction cache contention.

Therefore, other metrics motivated our decision for
this parameter. Increasing the ROB size negatively
affected our synthesis time, and the achievable clock
period, therefore, we tried to keep it as small as pos-
sible while still maintaining acceptable performance.
16 entries per thread seemed to be the best spot.

Reservation Stations Size: The size of the reser-
vation stations limits the number of instructions that
can be presently waiting on arguments. By defini-
tion, the RS should be no larger than the ROB, since
instructions must wait in both the ROB and the RS
when awaiting arguments. Likewise, it makes sense
to have the ROB be larger than the RS because most
programs do not have a perfect dependency chain:
that is, there will be some instructions in the middle
that resolve their arguments and complete execution
before the instructions before them. These instruc-
tions require ROB entries until they are allowed to

commit, but may give up their reservation station.
Finally, and perhaps most importantly, the reserva-
tion stations are generally implemented as a content
addressable memory — increasing the size of a CAM
makes it much slower.

As you can see in Figure 5, varying the size of the
RS did not significantly affect CPI. However, it sig-
nificantly affects clock period. We attempted to syn-
thesize the processor with a doubled RS, which added
1.39ns to our clock period. This certainly seemed like
a bad tradeoff.

Again, we're not sure why making the RS bigger
didn’t help much. Theoretically it should have had a
large impact, since more instructions could be pend-
ing at any given time. We think that our schedul-
ing logic was probably pretty terrible, and that this
contributed a lot to the lackluster performance. Basi-
cally, we believe that instructions were getting picked
out of the RS in a very suboptimal order, causing
large dependency chains to build up, until eventually
the system backed up and had to issue those instruc-
tions. That happens often with a smaller RS, so the
effects were less pronounced.

3.5

w

2.5

N

1.

%]

[uny

0.

%]

fib_rec

o

copy insertion

objsort parsort

m16 m32 m64

Figure 4: ROB size vs CPI for selected tests.

Number of Functional Units: We also
parametrized the number of each type of func-
tional unit to allow us to determine which selection
gave the best performance. Initially, we started with
four ALU’s, two multipliers, and two memory /branch
units. We tried to drop down to one multiplier be-
cause we figured two may be an unnecessary amount
of hardware. However, one multiplier hurt our CPI
on several test benches and we reasoned that having
an extra multiplier has marginal impacts on the
critical path. Multipliers themeselves impact our
critical path, but adding an extra does not.

A change that we did accept was utilizing three mem-
ory/branch units instead of two. We discovered that
there were more instructions that were serviced by
this functional unit than we originally thought. Like-
wise, there were not as many instructions being issued
to the ALU to warrant supplying four ALU’s. When
we went through with the change, our tests reported
a non-trivial increase in CPI. This is not to be mis-
taken with a dramatic increase, but CPI jumped up
by 0.3 or 0.4 on average, which we thought was worth
keeping. In addition, this kept our total number of
functional units to the same number we previously
had.

Cycle Endpoints: The final parameter that we
looked at was determining where cycles should be-
gin and end. Certain decisions were obvious. It felt
right that fetch and decode should be their own cy-
cles. Likewise, we intially wanted issue and finish to

occur in different cycles, and we implemented this
at some point in our development, however, it ended
up significantly worsening the CPI, and fixing that
seemed hard. It did improve the clock period, but
not by enough to make up for the CPI hit.

3.3 Clock Period vs CPI

Our final clock period was 12.51 nanoseconds. We
brought the clock period down to under 12 nanosec-
onds, but could not get it low enough to have bet-
ter overall performance than 12.51, due to memory
latency. Table 1 shows CPI for five different bench-
marks for different clock period ranges.

A graph of our processor’s performance relative to
clock period can be seen in Figure 6. Our goal was
to be as low vertically as possible, so we stayed at
12.51 ns even though we could have shrunk the clock
period a little more.

Figure 6: Clock period effect on performance

3.5
3
2.5
2
1.5
1
0.5
0

copy fib_rec insertion objsort parsort

m8 ml16 m32
Figure 5: RS size vs CPI for selected tests.

20-24.9 ns | 16.7-19.9 ns | 14.3-16.6 ns | 12.5-14.2 ns | 11.2-12.4 ns | 10-11.1 ns
copy 1.215 ns 1.238 ns 1.262 ns 1.285 ns 1.308 ns 1.331 ns
objsort 2.624 ns 2.934 ns 3.245 ns 3.556 ns 3.868 ns 4.178 ns
fib_rec 1.628 ns 1.675 ns 1.722 ns 1.770 ns 1.817 ns 1.864 ns
insertion | 1.169 ns 1.229 ns 1.264 ns 1.309 ns 1.355 ns 1.400 ns
parsort 1.178 ns 1.283 ns 1.388 ns 1.493 ns 1.597 sn 1.702 ns

Table 1: Cycles per instruction on different benchmarks

3.4 Simultaneous Multithreading

As part of the analysis of our processor, we analyzed
the abilities of the multithreaded nature of Marina.
We ran tests on their own in two-way superscalar
mode to determine how long they take, what predic-
tion rates they achieve, and what number of instruc-
tion cache and data cache evictions they suffer from.
Next, multiple tests were joined into a single SMT
test. This incurred a slight overhead in the form of
the fork and cpuid followed by a branch to the ap-
propriate code for the given thread. Measurements
of the code were again taken to determine both the
speedup of the code gained by performing the two
tests in parallel rather than back-to-back as well as
possible problems caused by running the two simul-
taneously. The speedup results of testing can be seen
in Figure 7

The tested combinations showed a large amount of
variation in the speedup gained. Conceptually, a
desirable case would be one program which involvs
many loads and stores which cause delays, and an-
other program involving many quickly executing in-

structions such as ALU operations which can be used
to fill those delays. This example is shown in the
smtFibCopy test, which combines an ALU-intensive
program (fib.s) with a memory-intensive program

(copy.s).

In other cases, much lesser gains can be seen, or even
losses in execution time. These can be due to several
different reasons. Since branch predictors are shared
between the two threads, it is possible that they will
throw off the history results for each other. It is
also possible that one thread will fill up the shared
reservation stations, reducing the gains which could
have been achieved with the second thread. Another
reason for lesser gains would be a large difference in
program lengths. If one thread finishes significantly
before the other, the advantages of running them si-
multaneously will be lost. This can be observed a
little in the smtInsertionCopy test, which combined
copy.s, at 167 instructions, with insertion.s, at 785
instructions.

In both the modestly-gaining smtlnsertionMult test
and performance-decreased smtInsertionParallelLong

0.4

0

Speedup

-0.1

-0.2

-0.3

-0.4

Figure 7: Speedup achieved by running two programs at once.

tests, however, losses were due to increased con-
tention within the shared caches. When run sepa-
rately, neither the insertion test nor the mult test
have any instruction cache evictions. When run to-
gether, however, 26 evictions are seen. Even more
telling, for the smtInsertionParallel Long test, while
parallel_long had 44 instruction cache evictions when
run alone, when run simultaneously with Insertion,
492 evictions from the instruction cache were ob-
served. This extremely high rate of cache contention
explains the overall losses in performance when run-
ning the two programs in parallel.

3.5 Prefetching

Our processor uses a straightforward scheme to fetch
instructions as far as two instructions in advance. We
used the branch predictor to determine the next two
predicted addresses and, given that they were not in
the cache already and that nothing else is using the
memory bus, we issue advance requests to memory
for them. Given that we used a modest prefetch-
ing scheme and used a fairly small memory latency,
we did not expect to see more than modest gains in
performance from prefetching. This is, in fact, what
we saw, but we remain pleased with our decision to
add this feature given that it took so little effort to
implement.

At our clock period of 12.51ns, prefetching decreased
the runtime of our five test benchmark (copy, objsort,
insertion, parsort, fib_rec) by 2.68%. On long pro-

10

grams with less instructions than instruction cache
slots, it makes sense that prefetching does not help,
and may even hurt. It may help slightly the first time
through the loop, but after that, with all instructions
already loaded into the cache, there is no benefit to
prefetching and it may even hurt with putting un-
necessary data into the cache on mispredicts. With
a better branch predictor and/or better prediction
logic or a larger instruction cache, prefetching might
have been more effective. However, in our processor,
prefetching is a cheap, modest improvement.

4 Group Dynamics

In regards to the division of work, each member per-
formed the tasks set out for them by themselves and
others in our team meetings.

Looking at the modules in our processor, the majority
were written by Austin and Branden. Austin wrote
the ROB, fetch, decode, and cdb_arbitrator modules.
He also wrote the SMT changes to the reservation
station and the commit modules. Branden wrote the
RAT, RRAT, PRF, and commit modules. He also
helped design the branch predictor and BTB along
with Paul and Ben. Lastly, he performed updates on
the three functional units.

The caches were handled exclusively by Paul. He
wrote the instruction cache and data cache with non-
blocking features, and added a prefetch to our in-
struction cache. He also wrote the mem_arbitrator

module.

Todd wrote the three functional units, the ALU, mul-
tiplier, and memory /branch unit.

All members helped write the base reservation station
for Milestone 1.

The testing was done by Todd, who wrote testbenches
for every module that Austin and Branden wrote,
keeping consistent with our policy of testing modules
that you did not write. He also wrote test benches
for the three functional units.

The cache testing was done by Paul and the branch
predictor was left without a testbench. The reasoning
behind this was that the group believed the predictor
could not hurt our correctness, only our performance.

Upon integration of our processor, all group members
were present during the last two weeks to assist in de-
bugging. Paul was the driving force behind synthesis
and dealing with the many issues that arose in that
department. Todd worked on any correctness issue
that popped up for our base processor or because of
SMT. Austin and Branden were both working on im-
proving our performance and helping out with every
issue we dealt with near the end. The importance of
their discussions and input for any major concern on
the processor cannot be overstated. Ben developed
tests to identify bugs during integration.

Additional tasks that were completed by group mem-
bers include Paul setting up the ncurses visual de-
bugger, Austin auto-generating the top level mod-
ule and keeping it updated, Branden working on our
top_level testbench and managing the git housekeep-
ing.

Ben was ineffective during the last part of the project
due to him falling behind due to an unforeseen ab-
sence.

Percentages:

e Todd: 22%
Branden: 22%
Austin: 22%
Ben: 12%
Paul: 22%

5 Conclusion

Our final synthesizable processor achieved a final
clock period of 12.5 nanoseconds and an average CPI
of 1.88 for the larger test cases. Our processor ar-
rived at the correct final state for every test program

11

that was supplied and every test program we added
for analysis. Our initial timeline was followed for the
most part, and the project was all but submitted by
the evening before the due date.

We feel that our processor’s SMT capabilities make
it very unique, since it’s an extra feature that is not
commonly attempted by 470 students because of the
complexities of supporting two threads. Given this,
we felt that SMT /superscalar was difficult enough to
accomplish, so we devoted less attention to low-level
optimizations and extra modules like a load store
queue or an early branch resolution module. We
think that our processor achieves a reasonable trade-
off between being able to run multiple programs at
once and single program performance. We hit the
minimum clock period that offered a reasonable mem-
ory latency for our situation. And n the end, we
were more than happy to just complete a working
processor with simultaneous multithreading; the per-
formance numbers were simply a bonus.

Appendix A: Block Diagram of Processor

12

	System Design
	Processor Stages
	Fetch Stage
	Decode Stage
	Dispatch Stage
	Issue and Execution Stage
	Commit Stage

	Advanced Caches
	Branch Prediction
	Simultaneous Multithreading
	New Instructions

	Tools & Testing
	Tools
	Autogeneration of top.v
	Testing Scripts
	ncurses Visual Debugger

	Testing Methodology
	Module-level testing
	Test programs

	Analysis
	Branch Predictor
	Out-Of-Order Parameters
	Clock Period vs CPI
	Simultaneous Multithreading
	Prefetching

	Group Dynamics
	Conclusion

